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Geometric dynamical observables in rare gas crystals
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We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be
used for determining the existence of a crossover between different dynamical regimes in a realistic system, a
model of a rare gas solid. Such a geometric approach allows us to locate the energy threshold between weakly
and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard methods
of classical statistical mechanics, i.e., Monte Carlo simulations, can be used for our computational purposes.
Finally we consider a Lennard-Jones crystal modeling solid xenon. The value of the energy threshold turns out
to be in excellent agreement with the numerical estimate based on the crossover between slow and fast
relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.
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I. INTRODUCTION

Generic nonintegrable Hamiltonian systems withN>3
degrees of freedom always have a connected chaotic com
nent in phase space. Moreover, asN is large, the measure o
such a component should be practically coincident with
measure of the whole constant-energy hypersurface. In
as discussed in Refs.@1–3#, the invariant tori whose exis
tence is predicted by the Kol’mogorov-Arnol’d-Mose
~KAM ! theorem have a positive measure only below a cr
cal value for the amplitude of the nonintegrable part of
Hamiltonian, and this critical amplitude is estimated to
rapidly decreasing withN. This does not mean that particula
cases in which the KAM threshold is relevant also in ma
roscopic systems cannot exist, nevertheless it suggests
such a situation could be hardly generic.

These facts support the expectation that varying
energy—or more precisely the energy densitye5E/N,
which is the physical parameter asN is large and eventually
as the limitN→` is taken—one should not observe a
qualitative change in the dynamical behavior of large non
tegrable Hamiltonian systems. The dynamics should be c
pletely chaotic at all energies, and the only effect of a va
tion of the energy should be a somewhat trivial rescaling
the characteristic instability time scale, measured by the
verse of the Lyapunov exponentl. An example of this kind
of behavior is provided by self-gravitating systems@4#.

On the contrary, there is now a widely accepted numer
evidence that—at least as long as models of nonlin
coupled oscillators are considered—there exist qualitativ
different regimes in the dynamics, which have been refer
to as weak and strong chaos@1,2#. In the strongly chaotic
regime, which corresponds to the above sketched scen
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fast phase-space mixing is observed regardless of the in
conditions. At variance, in correspondence of weak ch
one can observe very long mixing times with nonequilibriu
initial conditions, and the details of the dynamics a
strongly influenced by the choice of the initial condition
Moreover, at least on finite time scales, the dynamics app
as globally recurrent, as is probed by the probability dis
bution of single-particle autocorrelation functions@5#. This
effect was observed in several numerical simulations@6,7#
inspired by the results of the celebrated numerical exp
ment by Fermi, Pasta, and Ulam~FPU! @8#, where the ex-
pected equipartition of energy among normal modes was
observed in a chain of linear oscillators coupled by a we
anharmonicity.

The transition between weak and strong chaos is ra
sharp when detected looking at nonequilibrium properti
i.e., observing the time behavior of observables which
pend on the choice of a particular dynamical initial conditi
in which the system is far from thermodynamic equilibrium
Examples of these observables are the relaxation time
several dynamical observables to their equilibrium va
@1,2#, the finite-time values of the so-called spectral entro
@7,9#, and the already mentioned probability distributions
single-particle autocorrelation functions@5#. The behavior of
these observables neatly detects a threshold valuee5ec ,
which marks the transition between weak and strong cha
and has been referred to as the strong stochasticity thres
~SST! @1–4,10#, or as the crossover energy~CE! @11#. All
these observables have the drawback of being not glob
defined, i.e., depending on a particular choice of the ini
condition, which could in principle depend onN.

It is remarkable that also the Lyapunov exponentl, an
observable which is neither dependent on the initial con
tions nor onN, and which measures directly the degree
chaos, marks the SST. In fact in correspondence ofec the
dependence ofl one has a crossover: in the strongly chao
regime one finds a power law which can be successf
predicted by a random matrix approximation~RMA! for the

:
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tangent dynamics@2#. In this regime the RMA yields good
predictions also for the shape of the whole spectrum
Lyapunov exponents@12#. At variance, in the weakly chaoti
casel is still positive—for nonlinear coupled oscillatorsl
}e2—thus indicating that chaos is present, but the RMA
no longer able to predict its dependence one. The break-
down of the RMA is a clue that some global change h
happened in the phase-space structure. The drawback o
ing the dependence ofl on the energy density as a probe
the SST is that the transition is no longer sharp as in the c
of nonequilibrium observables: atec , l(e) exhibits only a
crossover between different asymptotic behaviors.

The deep origin of these puzzling dynamical features
nonintegrable Hamiltonian systems with many degrees
freedom has at present not yet been understood: neverthe
a recently proposed differential geometrical approach
Hamiltonian chaos@3# has established a link between th
SST and some major change of the geometric structure
derlying the dynamics, allowing an operative definition
this threshold no longer based on the computation of tim
asymptotic quantities like Lyapunov exponents, but on s
tistical averages of geometric observables. Starting from
results of Ref.@3#, the stability of the SST in the thermody
namic limit N→` has been proved at least for the on
dimensional FPU model@10#. Moreover, this approach pro
vides the basic tools to obtain a model scalar equation wh
describes the main features of chaos being independen
the details of the dynamics@13#. The present work follows
this geometric approach.

It is worth mentioning that very recently another kind
geometric approach has been put forward@14# which is
based on the geometric properties of the trajectories— s
as curves inR2N—rather than on the properties of the amb
ent manifolds. As long as a comparison is possible, the
approaches yield perfectly consistent results.

The phenomenology related to the SST has been ma
studied in connection with one-dimensional models
coupled oscillators~FPU model and latticew4 classical
model @1–3#!, and some numerical results for two
dimensional crystals@15# strongly suggest that a transitio
between weak and strong chaos is present in more rea
systems. The present work is concerned with the possib
of the existence of the SST in a realistic system, in the p
spective of a possible experimental verification of the phy
cal consequences of the transition between weak and st
chaos. Such an experiment has been recently proposed@11#,
and should verify the existence of a crossover between s
and fast relaxation to thermal equilibrium in a rare gas cr
tal with diluted impurities. The far-from-equilibrium dynam
ics of such a system has been studied numerically in R
@11#, showing that the crossover occurs ate.0.15«, where
« is the depth of the interaction potential well. The pres
work is concerned with the equilibrium dynamical propert
of a simpler but closely related system, i.e., a model of a r
gas solid without impurities. As discussed in Ref.@11#, the
role played by impurities is crucial to obtain suitable initi
conditions in the nonequilibrium case, but should have o
a weak effect on the global dynamical properties of the s
tem @this fact is confirmed in a one-dimensional~1D! case
@16##, hence the eventual existence of a SST in our mo
system—apart from being interesting by itself—could hav
f
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significance in explaining the phenomenology observed
Ref. @11#.

More precisely, the model studied in the present work i
system ofn point masses arranged on a three-dimensio
fcc lattice with nearest-neighbor Lennard-Jones interact
The classical dynamics of such a system is a reasonable
proximation of the behavior of a rare gas crystal if quantu
effects can be neglected, i.e., as long as the temperatu
high enough. Hence the existence of a crossover betw
weak and strong chaos in this model could have a substa
physical relevance if it occurs ate values allowing a classica
description of the dynamics, at least as a first approximat
As we shall see in Sec. IV, this happens at least in the cas
Xe crystals.

The present work is organized as follows. In Sec. II t
geometrical methods which allow a characterization of
transition between weak and strong chaos are sketched; t
methods were introduced in Refs.@3,10# and@13#, where all
details can be found. The model studied is described in S
III, and the results are presented and discussed in Sec
Some conclusions are drawn in Sec. V.

II. RIEMANNIAN GEOMETRY
AND CHAOTIC DYNAMICS

Hamiltonian dynamics can be rephrased in geometr
terms owing to the fact that the trajectories of a dynami
system with quadratic kinetic energy can be seen as ge
sics of a suitable Riemannian manifold. There are sev
choices for the ambient manifold as well as for the met
tensor. As already discussed in Ref.@10#, a particularly use-
ful ambient space is the enlarged configuration space-t
M3R2, i.e., the configuration space$q1, . . . ,qi , . . . ,qN%
with two additional real coordinatesq0 and qN11. In the
following q0 will be identified with the timet. For standard
HamiltoniansH5T1V(q), whereT5 1

2ai j q̇
i q̇ j , this mani-

fold, equipped with Eisenhart’s metricgE , has a semi-
Riemannian~Lorentzian! structure (detgE521). The arc-
length is given by

ds25ai j dq
idqj22V~q!~dq0!212dq0dqN11, ~1!

where bothi and j run between 1 andN. Let us restrict to
geodesics whose arc-length parametrization is affine,
ds252C1

2dt2; simple algebra shows that the geodesic eq
tions

d2qm

ds2
1Gnl

m dqn

ds

dql

ds
50, m,n,l50, . . . ,N11, ~2!

become Newton equations~without loss of generality
ai j5d i j is considered!,

d2qi

dt2
52

]V

]qi
~3!

for i51, . . . ,N, together with two extra equations forq0

andqN11 which can be integrated to yield

q05t, ~4a!
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qN115C1
2t1C22E

0

t

L~q,q̇!dt, ~4b!

whereL(q,q̇) is the Lagrangian, andC1, C2 are real con-
stants. As stated by Eisenhart theorem@17#, the dynamical
trajectories in configuration space are projections onM of
the geodesics of (M3R2,gE).

In the geometrical framework, the stability of the traje
tories is mapped on the stability of the geodesics, henc
can be studied by the Jacobi equation for geodesic devia

D2J

ds2
1R~ ġ,J!ġ50, ~5!

whereR is the Riemann curvature tensor,ġ is the velocity
vector along the reference geodesicg(s), D/ds is the cova-
riant derivative, andJ, which measures the deviation b
tween nearby geodesics, is referred to as the Jacobi field.
stability—or instability—of the dynamics, and thus dete
ministic chaos, originates from the curvature properties
the ambient manifold. In local coordinates, Eq.~5! is written
as

D2Jm

ds2
1Rnrs

m dqn

ds
Jr
dqs

ds
50, ~6!

and as already shown in Refs.@3,10#, in the case of Eisenhar
metric it simplifies to

d2Ji

dt2
1

]2V

]qi]q
j J

j50, ~7!

which is nothing but the usual tangent dynamics equation
standard Hamiltonians. The Lyapunov exponents are usu
computed evaluating the rate of exponential growth ofJ by
means of a numerical integration of Eq.~7! @18#.

In the particular case ofconstant curvaturemanifolds, Eq.
~5! becomes very simple@19#

D2Jm

ds2
1KJm50, ~8!

and has bounded oscillating solutionsJ'cos(AKs) or expo-
nentially unstable solutionsJ'exp(A2Ks) according to the
sign of the constant sectional curvatureK, which is given by

K5
KR

N21
5

R
N~N21!

, ~9!

whereKR5Rmnq̇
mq̇n is the Ricci curvature andR5Rm

m is
the scalar curvature;Rmn is the Ricci tensor. Manifolds with
K,0 are considered in abstract ergodic theory~see, e.g.,
Ref. @20#!. Krylov @21# originally proposed that the presenc
of some negative curvature could be the mechanism actu
at work to make chaos in physical systems, but in reali
cases the curvatures are neither found constant nor ev
where negative, and the straightforward approach base
Eq. ~8! does not apply. This is the main reason why Krylov
ideas remained confined to abstract ergodic theory with
exceptions.
it
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In spite of these major problems, some approximations
Eq. ~5! are possible even in the general case. The key poin
that negative curvatures are not strictly necessary to m
chaos, and that a subtler mechanism related to thebumpiness
of the ambient manifold is actually at work.

Let us choose a geodesic frame~i.e., a reference frame
which is parallel transported along a geodesic; as a co
quence,D/ds[d/ds), and project Eq.~5! on a direction de-
termined by the unit vectoru:

d2

ds2
^J,u&1^R~ ġ,J!ġ,u&50. ~10!

If the system is chaotic,J grows exponentially with growth
rates given by the Lyapunov exponents, and ifu is the di-
rection corresponding to the largest Lyapunov exponenl,
after a finite~proper! time s the components ofJ along the
other directions will become negligible compared to th
alongu, thus we findJ'cu. Equation~10! is thus rewritten
approximately as a scalar Hill equation forc,

d2c

ds2
1K~s!c50, ~11!

whereK(s)5K(ġ,u) is the sectional curvature of the geo
desic plane spanned by the directionsġ and u and is no
longer a constant, but a fluctuating function taking mos
positive values ~in some cases like the FPU modelK is
strictly positive! whence the solutions of Eq.~11! can be
subject toparametric instability. Curvature fluctuations can
produce chaos even if no negative curvature is experien
by the geodesics. As the sectional curvature is no lon
constant,KR andR are, respectively, averages ofK over the
direction ofJ and over both the direction ofJ and the direc-
tion of the reference geodesic in the latter. Equation~9! no
longer holds, nevertheless it is a first-order approximation
which an estimate of the curvature fluctuations can be ad
to obtain a stochastic model ofK(s) independent of the dy-
namics of the system@13#. This model leads to an analytica
estimate of the Lyapunov exponentl, which is correct~at
least for the FPU model! in the limit N→`.

Up to this point the results are independent of the cho
of the metric. Specializing to the Eisenhart arc-length para
etrization, Eq.~11! is rewritten in terms of the timet,

c̈1K~ t !c50, ~12!

where a dot stands for a time derivative andK(t)5
K(sA2C1

2)/2C1
2. The stochastic model ofK(t) is given by

K~ t !5^kR&1^d2kR&1/2h~ t !, ~13!

wherekR5KR /N, ^ & stands for an average taken along
geodesic, which, for systems in thermal equilibrium, can
substituted with a statistical average taken with respect
suitable probability measure~e.g., the microcanonical or th
canonical measure!; h(t) is a stationaryd-correlated Gauss
ian stochastic process with zero mean and variance equ
1. Using Eisenhart metric, and for standard Hamiltonians,
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2542 55LAPO CASETTI AND ALESSANDRO MACCHI
nonvanishing components of the Riemann tensor
R0i0 j5]qi]qjV, hence the Ricci curvature has the remarka
simple form

kR5
1

N
¹2V, ~14!

where¹2 is the Euclidean Laplacian operator. Equation~12!
becomes a stochastic differential equation, i.e., the evolu
equation of a random oscillator@22#. It is worth noticing that
Eq. ~12! is no longer dependent on the dynamics, since
random process depends only on statistical averages.
estimate of the Lyapunov exponentl is then obtained
through the evolution of the second moments of the solu
of Eq. ~12! as

l5 lim
t→`

1

2
log

c2~ t !1ċ2~ t !

c2~0!1ċ2~0!
. ~15!

As shown in Ref.@13#, this yields the following expression
for l:

l~k,dk ,t!5
1

2 S L2
4k

3L D , ~16!

where

L5S dk
2t1A64k3

27
1dk

4t2D 1/3, ~17a!

t5
pAk

2Ak~k1dk!1pdk
; ~17b!

in the above expressionsk is the average Ricci curvatur
k5^kR& anddk stands for the mean-square fluctuation of t
Ricci curvature,dk5^d2kR&1/2.

The advantages in using the geometric approach
Hamiltonian chaos are thus evident. In fact, it is possible
give reliable estimates of the Lyapunov exponent with
actually computing the time evolution of the system: the
timate ~16! of l depends only on statistical averages wh
can be either computed analytically in some cases~for in-
stance, in the case of the FPU model@13#! or, in general,
extracted from a Monte Carlo simulation, as is the case of
model to be studied in the present work.

The behavior of the average geometric observables as
control parameter~e.g., the energy density or the temper
ture! is varied conveys an information which goes beyo
the possibility of computing the Lyapunov exponent. T
dependence of the average Ricci curvature on the en
density has already been used in Ref.@10# to give an opera-
tional definition of the SST, which allows its computation
the thermodynamic limit, showing the stability of the thres
old in this limit for the FPU model. In fact, it is easy to fin
that for a harmonic chain̂kR& is constant as the energ
density is varied, and this is a common feature of other
tegrable models~e.g., the Toda chain@10#!. A computation
of ^kR&(e) at constant volume~length! for the FPU chain
shows that the average Ricci curvature exhibits two w
defined asymptotic behaviors,^kR&(e)5const ase→0 ~har-
re
y

n

e
he

n

to
o
t
-

e

he
-

gy

-

-

l-

monic limit!, and^kR&(e)5e1/2 ase→`. The crossover be-
tween the two asymptotic curves occurs at a value ofe,
ec , which can be interpreted as a geometric estimate of
SST. Such a geometric estimate is in very good agreem
with estimates based on other methods.

Moreover, one can look at the random oscillator equat
~12! as an effective Jacobi equation for a geodesic flow o
surfaceM whose Gaussian curvature is given by the rand
processK(t). As long as nonlinear coupled oscillators a
considered, the average Ricci curvature is positive, he
M can be regarded as a sphere with a fluctuating radius
the limit of vanishing fluctuations, one recovers the bound
evolution of the Jacobi field associated with integrable d
namics. Chaos suddenly appears as curvature fluctuation
turned on, nevertheless it it will be ‘‘weak’’ as long a
dk!k, i.e., as long asM can be considered as a weak
perturbed sphere. On the contrary, as the size of curva
fluctuations becomes of the same order of the average
vature,dk'k, M can no longer resemble a sphere, and
dynamics will no longer ‘‘feel’’ the integrable limit. Hence
we expect the dynamics to be strongly chaotic. This is by
means a deep explanation of the existence of weakly
strongly chaotic regimes in Hamiltonian dynamics. Nev
theless it shows how the simple geometric concepts wh
enter the Riemannian description of Hamiltonian chaos,
sides providing effective computational tools, are also use
in helping one’s physical intuition with images and analog
which would be difficult to find elsewhere.

III. THE MODEL AND THE GEOMETRIC OBSERVABLES

The system studied in the present work is a crystal on
atoms of massmmoving in three dimensions and interactin
through a pairwise central potentialv(r ). Its Hamiltonian is

H5
1

2m (
i51

n

pi
21V~X!, ~18!

where

V~X!5
1

2 (
i , j51

n

v~ uxi2xj u!. ~19!

The geometric observables, which within the approximatio
described in the preceding section are relevant to the
namical instability of the system, are the average Ricci c
vature of (M3R2,gE) and its fluctuations. In the case of
pairwise interaction potential the Ricci curvature turns out
be @see Eq.~14!#

kR5
1

N (
i51

n

(
j i51

12

v9~ uxi2xj iu!12
v8~ uxi2xj iu!

uxi2xj iu
, ~20!

where it should be noticed thatN53n as it represents the
number of degrees of freedom. The quantities which hav
be determined are

k5^kR&, ~21a!

dk
25^d2kR&5

1

N
~^kR

2&2^kR&2!. ~21b!
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The probability measure which is usually employed for co
putational purposes is the canonical distribution so that
statistical averages of Eqs.~21! can be written as

^ f &~b!5ZC
21E dX f ~X!e2bV~X!, ~22!

whereZC is the configurational part of the canonical par
tion function,

ZC5E dX e2bV~X!. ~23!

As a matter of fact in the canonical statistical ensemble
role of control parameter is played by the inverse tempe
tureb51/kBT, wherekB is Boltzmann’s constant. Howeve
in the thermodynamic limit (N→`), the microcanonical av-
erages can also be obtained from the canonical ones. As
as the mean valuek5^kR& is concerned, the canonical an
microcanonical averages differ only by aO(1/N) correction.
Hence in the thermodynamic limit

^kR&~e!5^kR&„b~e!…, ~24a!

e~b!5
1

2b
2
1

N

]

]b
@ logZC~b!#. ~24b!

As regardsdk
25^d2kR&, one must keep in mind that fluctua

tions depend on the statistical ensemble. In fact, the dif
ence between canonical and microcanonical fluctuati
does not vanish in the thermodynamic limit and the relat
between these two quantities is, according to Ref.@23#,

^d2kR&~e!5^d2kR&„b~e!…1F„b~e!…, ~25a!

F~b!52
kBb2

cv
S ]^kR&

]b D 2, ~25b!

FIG. 1. Average Ricci curvaturek vs the energy per degree o
freedom at constant density (r51.0 in natural units!. Open circles,
data of computations where the interaction potential~26! has been
expanded up to the fourth order in the Taylor series; solid circ
data obtained with the ‘‘full’’ interaction potential~26!. The two
dotted lines represent the estimated low- and high-energy beha
of k helping the identification ofec ; the line interpolating the high-
energy data has been obtained by fitting a lawk'a1be1/2, with
fitting parametersa andb, to the high-energy data.
-
e

e
-

ng

r-
s
n

wheree(b) is given again by Eq.~24b! andcv is the specific
heat at constant volume. Thus the microcanonical fluct
tions can be obtained from the canonical ones provided
the values of the specific heat are known.

IV. RESULTS AND DISCUSSION

The geometric observables described in the preced
sections have been evaluated for a Lennard-Jones f
centered-cubic~fcc! crystal whose Hamiltonian is given b
Eqs. ~18! and ~19! with a pair interaction potential, which
reads

v~r !54«F S s

r D
12

2S s

r D
6G . ~26!

Through an appropriate choice of the free parametersm
~mass!, «, ands, this simple model is able to take account
most thermodynamical properties of rare gas solids.

The statistical averages of Eqs.~21! have been caculate
by means of a standard canonical Monte Carlo algorit
where a simulation box ofn5256 particles subjected to pe
riodic boundary conditions has been used. In all simulatio
only nearest-neighbor interactions have been dynamic
taken into account; the contributions of the interactions
yond the nearest-neighbor shell have been considered
‘‘static approximation’’ in which the instantaneous relativ
positions of the atoms are replaced by their equilibrium v
ues. Apparently this procedure does not affect the evalua
of the geometrical observables; its advantage resides in
fact that it allows one to employ the all-neighbor paramet
« ands which give a reasonnable representation of the r
pair potential and the equation of state of rare gas solids@24#.

All data reported here are given in dimensionless form
reducing them with respect to the ‘‘natural units’’ of th
model; namely, the reduced energy is measured in unit
« and the Ricci curvature in units of«/s2 as well as its
mean-square fluctuation.

We performed two distinct series of simulations. In t
first series the densityr of the crystal has been kept consta
in order to compare the qualitative behavior of the geome

s,

rs

FIG. 2. Normalized mean-square fluctuation of the Ricci cur
ture dk /k vs the energy per degree of freedom at constant den
Symbols as in Fig. 1. The dotted line is the linear behavior.



y
lla

rte

te
om

ro
s
e
S

2,
th
v

n
ot

a
i

th
y

t
b
.
at
f
it
th
nu
e

bl
t

ic
n

he

ive

iour

we

of

to a
f
m.
e
ilib-

he
this
s is
our
a-
sti-
ac-

ing
e
ob-
n
able
of

en-
ere
pa-
ur

w a
be

f
den-

a
w

2544 55LAPO CASETTI AND ALESSANDRO MACCHI
observables with the known results for one-dimensional s
tems. In fact, computations of chains of anharmonic osci
tors have been performed at constant length@3,10,16#. The
numerical outcomes of this series of simulations are repo
in Figs. 1–3, wherek, dk /k, and the estimatel of the
Lyapunov exponent computed according to Eq.~16! are plot-
ted versus the energy per degree of freedom of the sys
The additional data appearing in these figures refer to c
putations where the interaction potential~26! has been ex-
panded up to the fourth order in the Taylor series. This p
cedure allows us to perform simulations at higher energie
order to provide a better representation of the crossover
ergy region. The results reported in Fig. 1 show that the S
or crossover energy, can be located aroundec.0.15. This
estimate ofec is confirmed by the results reported in Fig.
for Fig. 2 shows that in correspondence of this threshold
ratio dk /k deviates remarkably from the low-energy beha
ior dk /k}e and tends to saturate towardsdk /k.1, which
implies that the manifold becomes highly anisotropic, a
thus we expect the dynamics to enter the strongly cha
regime. As a consequence of the behavior ofk anddk , the
geometric estimatel of the Lyapunov exponent shows
sharp crossover between two different power laws. It
worth recalling that the quantity here reported is not
‘‘true’’ Lyapunov exponent but an estimate which has an
how proven to be extremely accurate in other systems@13#.

The aim of the second series of simulations is mainly
determine whether the averages of the geometric observa
are affected by a change in the density of the sample
principle, one expects such a change because the curv
properties depend on space derivatives, and a change o
density induces a change in the length scale. Moreover,
interesting to test the expectation that the crossover in
relaxation behavior of a Xe crystal recently observed in
merical simulations@11# is related with some major chang
in the global properties of the dynamics~i.e., the SST!,
which in turn can be detected by the geometric observa
under investigation in this paper. Hence it is interesting
compute the statistical averages of Eqs.~21! using settings
which are close to those used in the molecular dynam
simulations reported in@11#. In particular, the results show

FIG. 3. Theoretical estimate of the Lyapunov exponentl ac-
cording to Eq.~16! versus the energy per degree of freedom
constant density. Symbols as in Fig. 1. The dotted line is the po
law e2.
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in Figs. 3–6 refer to the values of the density given by t
empirical equation of state of solid Xe («/kB5228.6 K,s 5
3.959 Å! @24#.

The results reported in Figs. 3–6 show that the qualitat
behavior of the curvature fluctuations~Fig. 5! and of the
theoretical estimate of the Lyapunov exponentl ~Fig. 6! is
the same as in the constant density case, while the behav
of the average curvature~Fig. 4! is dramatically altered: in-
stead of a crossover between two asymptotic regimes
have here a neat maximum ofk at e5ec . It is remarkable
that the value ofec — as estimated through the behavior
dk or l or by the position of the maximum ofk—remains the
same as in the constant density case, and corresponds
temperatureT.0.15«/kB , i.e., occurs at a temperature o
physical relevance for the thermodynamics of this syste
Moreover, the value ofec is in excellent agreement with th
value of the crossover energy estimated via the nonequ
rium dynamics@11#.

Let us now briefly comment about the problem of t
relevance of quantum effects for the results presented in
section. As already stated in the Introduction, our analysi
a completely classical one so that the significance of
results depends on the reliability of the classical approxim
tion of the dynamics in the range of temperatures inve
gated. The strength of the quantum behavior of the inter
tion is ruled by a coupling parameterg5\vLJ /« that is the
ratio between the typical vibrational quantum energy\vLJ
calculated in the harmonic approximation and the bind
energy«. Valuesg!1 denote that quantum effects may b
neglected in a wide range of temperatures. However, as
served in Ref.@25#, the failure of the classical approximatio
becomes quite evident for all rare gas solids at measur
temperatures. The detailed evaluation of the influence
quantum effects for the determination of the threshold
ergy ec is beyond the scope of this paper. We present h
results for solid xenon where, due to the small coupling
rameter (g50.106), the relevance of quantum effects in o
discussion, if any, is certainly not decisive.

V. CONCLUSIONS

We have presented here a detailed description of ho
differential geometric approach to Hamiltonian chaos can

FIG. 4. Average Ricci curvaturek vs the energy per degree o
freedom. Here, in each simulation we have used values of the
sity according to the empirical equation of state of solid xenon.t
er
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used for determining the existence of the SST in a reali
system. We have discussed the connection between the
and the geometrical observables which have been inv
gated in this paper. We have shown how standard method
classical statistical mechanics can be used for our comp
tional purposes. We have finally applied the framework h
developed to a Lennard-Jones crystal modeling solid xen
The crossover energy region of this system has been cle
detected and the value of the energy threshold has turned

FIG. 5. The same as Fig. 4 for the normalized mean-squ
fluctuation of the Ricci curvaturedk /k. The dotted line is the linea
behavior.
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to be in excellent agreement with the numerical results p
sented in a recent paper@11#. The possibility of setting up an
experiment of this system for determining the physical co
sequences of the transition from weak and strong chaos
gime is under investigation.
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1992!.
@20# Ya. G. Sinai,Dynamical Systems II, Encyclopedia of Math-

ematical Sciences Vol. 2~Springer-Verlag, Berlin, 1989!.
@21# N. S. Krylov,Works on the Foundations of Statistical Physi

~Princeton University Press, Princeton, 1979!.
@22# N. G. Van Kampen, Phys. Rep.24, 171 ~1976!.
@23# J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev.153,

250 ~1967!.
@24# Rare Gas Solids, edited by M. L. Klein and J. A. Venables

~Academic, London, 1976!.
@25# A. Cuccoli, A. Macchi, V. Tognetti, and R. Vaia, Phys. Rev.

47, 14 923~1993!.


