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Geometric dynamical observables in rare gas crystals
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We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be
used for determining the existence of a crossover between different dynamical regimes in a realistic system, a
model of a rare gas solid. Such a geometric approach allows us to locate the energy threshold between weakly
and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard methods
of classical statistical mechanics, i.e., Monte Carlo simulations, can be used for our computational purposes.
Finally we consider a Lennard-Jones crystal modeling solid xenon. The value of the energy threshold turns out
to be in excellent agreement with the numerical estimate based on the crossover between slow and fast
relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.
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[. INTRODUCTION fast phase-space mixing is observed regardless of the initial
conditions. At variance, in correspondence of weak chaos
Generic nonintegrable Hamiltonian systems witle 3 one can observe very long mixing times with nonequilibrium
degrees of freedom always have a connected chaotic compinitial conditions, and the details of the dynamics are
nent in phase space. Moreover,Niss large, the measure of strongly influenced by the choice of the initial conditions.
such a component should be practically coincident with theMoreover, at least on finite time scales, the dynamics appears
measure of the whole constant-energy hypersurface. In fachs globally recurrent, as is probed by the probability distri-
as discussed in Ref§1-3], the invariant tori whose exis- bution of single-particle autocorrelation functioffs|. This
tence is predicted by the Kol'mogorov-Arnol'd-Moser effect was observed in several numerical simulatifh3]
(KAM) theorem have a positive measure only below a criti-inspired by the results of the celebrated numerical experi-
cal value for the amplitude of the nonintegrable part of thement by Fermi, Pasta, and Ula@PU) [8], where the ex-
Hamiltonian, and this critical amplitude is estimated to bepected equipartition of energy among normal modes was not
rapidly decreasing witlN. This does not mean that particular observed in a chain of linear oscillators coupled by a weak
cases in which the KAM threshold is relevant also in mac-anharmonicity.
roscopic systems cannot exist, nevertheless it suggests that The transition between weak and strong chaos is rather
such a situation could be hardly generic. sharp when detected looking at nonequilibrium properties,
These facts support the expectation that varying thé.e., observing the time behavior of observables which de-
energy—or more precisely the energy denséy E/N, pend on the choice of a particular dynamical initial condition
which is the physical parameter hisis large and eventually in which the system is far from thermodynamic equilibrium.
as the limitN—o is taken—one should not observe any Examples of these observables are the relaxation times of
qualitative change in the dynamical behavior of large noninseveral dynamical observables to their equilibrium value
tegrable Hamiltonian systems. The dynamics should be conj4,2], the finite-time values of the so-called spectral entropy
pletely chaotic at all energies, and the only effect of a varia{7,9], and the already mentioned probability distributions of
tion of the energy should be a somewhat trivial rescaling ofingle-particle autocorrelation functiofs]. The behavior of
the characteristic instability time scale, measured by the inthese observables neatly detects a threshold vetse.,
verse of the Lyapunov exponent An example of this kind  which marks the transition between weak and strong chaos,
of behavior is provided by self-gravitating systefds. and has been referred to as the strong stochasticity threshold
On the contrary, there is now a widely accepted numerica(SST) [1-4,10, or as the crossover energZE) [11]. All
evidence that—at least as long as models of nonlineathese observables have the drawback of being not globally
coupled oscillators are considered—there exist qualitativelgefined, i.e., depending on a particular choice of the initial
different regimes in the dynamics, which have been referred¢ondition, which could in principle depend &
to as weak and strong cha@s,2]. In the strongly chaotic It is remarkable that also the Lyapunov expong&ntan
regime, which corresponds to the above sketched scenariobservable which is neither dependent on the initial condi-
tions nor onN, and which measures directly the degree of
chaos, marks the SST. In fact in correspondence.ahe
*Also at INFN, Sezione di Firenze, ltaly. Electronic address:dependence of one has a crossover: in the strongly chaotic
casetti@sns.it regime one finds a power law which can be successfully
"Electronic address: macchi@fi.infn.it predicted by a random matrix approximati®MA) for the
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tangent dynamic§2]. In this regime the RMA yields good significance in explaining the phenomenology observed in
predictions also for the shape of the whole spectrum oRef.[11].
Lyapunov exponentsl2]. At variance, in the weakly chaotic More preciS(_aIy, the model studied in the presen_t Work_ isa
case\ is still positive—for nonlinear coupled oscillatoks ~ System ofn point masses arranged on a three-dimensional
xe’—thus indicating that chaos is present, but the RMA isfcc lattice with nearest-neighbor Lennard-Jones interaction.
no longer able to predict its dependence enThe break- The _classlcal dynamics o_f such a system is a rea}sonable ap-
down of the RMA is a clue that some global change had’roximation of the behavior of a rare gas crystal if quantum
happened in the phase-space structure. The drawback of (&ffécts can be neglected, i.e., as long as the temperature is
ing the dependence af on the energy density as a probe of high enough. Hence the existence of a crossover between
the SST is that the transition is no longer sharp as in the caseak and strong chaos in this model could have a substantial
of nonequilibrium observables: at, \(e) exhibits only a physical relevance if it occurs atvalues allowing a classical
crossover between different asymptotic behaviors. description of the dynamics, at least as a first approximation.
The deep origin of these puzzling dynamical features of 'S We shall see in Sec. 1V, this happens at least in the case of
nonintegrable Hamiltonian systems with many degrees of€ Crystals. , ,
freedom has at present not yet been understood: nevertheless, | e Present work is organized as follows. In Sec. Il the
a recently proposed differential geometrical approach tgeometrical methods which allow a characterization of the
Hamiltonian chaog3] has established a link between the fransition between weak and strong chaos are sketched; these

SST and some major change of the geometric structure uriP€thods were introduced in Ref&,10] and[13], where all
derlying the dynamics, allowing an operative definition of details can be found. The model stud|ed_|s descrlped in Sec.
this threshold no longer based on the computation of timelll» and the results are presented and discussed in Sec. IV.
asymptotic quantities like Lyapunov exponents, but on staSOMe conclusions are drawn in Sec. V.

tistical averages of geometric observables. Starting from the

results of Ref[3], the stability of the SST in the thermody- Il. RIEMANNIAN GEOMETRY

namic limit N—o has been proved at least for the one- AND CHAOTIC DYNAMICS

dimensional FPU moddlL0]. Moreover, this approach pro- _ ) ) .
vides the basic tools to obtain a model scalar equation which Hamiltonian dynamics can be rephrased in geometrical

describes the main features of chaos being independent §'Ms owing to the fact that the trajectories of a dynamical

the details of the dynamidd3]. The present work follows system with quadratic kinetic energy can be seen as geode-
this geometric approach. sics of a suitable Riemannian manifold. There are several

It is worth mentioning that very recently another kind of choices for the ambient manifold as well as for the metric
geometric approach has been put forwdfdi] which is tensor. As already discussed in Rgf0], a particularly use-

based on the geometric properties of the trajectories— sedH! arr;bl_ent space is the enlarged cor11f|gurat|ion space-time
as curves ifi2N—rather than on the properties of the ambi- M < %, i.e., the configuration _spac%q SRR }
ent manifolds. As long as a comparison is possible, the twdVith two a(()jdlt_mnal_real_goordl_nateq andq™"". In the
approaches yield perfectly consistent results. following g~ will be identified with the tlm.e_t'. _For standard

The phenomenology related to the SST has been mainlflamiltonians =T+ V(q), where T=3a;;q'q’, this mani-
studied in connection with one-dimensional models offold, equipped with Eisenhart's metrige, has a semi-
coupled oscillators(FPU model and latticep* classical ~Riemannian(Lorentzian structure (dege=—1). The arc-
model [1-3]), and some numerical results for two- length is given by
dimensional crystal$15] strongly suggest that a transition o
between weak and strong chaos is present in more realistc ~ ds’=a;;dg'dg —2V(q)(dg®)?+2dq®dg™*t, (D)
systems. The present work is concerned with the possibility
of the existence of the SST in a realistic system, in the perwhere bothi andj run between 1 andl. Let us restrict to
spective of a possible experimental verification of the physigeodesics whose arc-length parametrization is affine, i.e.,
cal consequences of the transition between weak and stronf?=2C3dt?; simple algebra shows that the geodesic equa-
chaos. Such an experiment has been recently prodddéd tions
and should verify the existence of a crossover between slow
and fast relaxation to thermal equilibrium in a rare gas crys- d?g* dg’ dg*
tal with diluted impurities. The far-from-equilibrium dynam- F+Fﬁ)\g gs O #wA=0,.. N+, )
ics of such a system has been studied numerically in Ref.
[1.1]’ showing that the_ crossover occur_sato.lt's, where become Newton equationgwithout loss of generality
¢ is the depth of the interaction potential well. The present, " o "~ considere}]

) . L . T |

work is concerned with the equilibrium dynamical properties™ ™!
of a simpler but closely related system, i.e., a model of a rare

24i
gas solid without impurities. As discussed in Rgf1], the d_(iz _ ﬂ 3
role played by impurities is crucial to obtain suitable initial t aq;
conditions in the nonequilibrium case, but should have only
a weak effect on the global dynamical properties of the sysfor i=1, ... N, together with two extra equations fo°

N+1 which can be integrated to yield

tem [this fact is confirmed in a one-dimensiordD) case andq
[16]], hence the eventual existence of a SST in our model

system—apart from being interesting by itself—could have a q°=t, (43
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N t ) In spite of these major problems, some approximations on
q " "=Cit+Co— f L(qg,q)dt, (4b)  Eq.(5) are possible even in the general case. The key point is
0 that negative curvatures are not strictly necessary to make
chaos, and that a subtler mechanism related tdtimepiness
of the ambient manifold is actually at work.
Let us choose a geodesic frarfiee., a reference frame
which is parallel transported along a geodesic; as a conse-

the geodesics ofM X R2,gg). _ . 9 )
In the geometrical framework, the stability of the trajec- ?eurﬁzﬁidplbi/sthglgri‘)t, \chiaaro]em Eq(5) on a direction de

tories is mapped on the stability of the geodesics, hence it

whereL(q,q) is the Lagrangian, an€;, C, are real con-
stants. As stated by Eisenhart theorghd], the dynamical
trajectories in configuration space are projectionshbrof

can be studied by the Jacobi equation for geodesic deviation 42
D2 . . g2+ R(y,J)7,u)=0. (10)
a2 TR(»I)r=0, (5)

If the system is chaotic] grows exponentially with growth

whereR is the Riemann curvature tensay,is the velocity ~ fates given by the Lyapunov exponents, and ils the di-
vector along the reference geodesis), D/ds is the cova-  fection corresponding to the largest Lyapunov exponent
riant derivative, and], which measures the deviation be- after a finite(propej time s the components o along the
tween nearby geodesics, is referred to as the Jacobi field. Tigher directions will become negligible compared to that
stability—or instability—of the dynamics, and thus deter- @longu, thus we findJ~ yu. Equation(10) is thus rewritten
ministic chaos, originates from the curvature properties ofPproximately as a scalar Hill equation fer

the ambient manifold. In local coordinates, E§) is written

as d2
o K(9u=0, (10
D2J# dg’ dqg”
W"‘R/jpgd de—ZO, (6) .

S S whereK(s)=K(v,u) is the sectional curvature of the geo-
and as already shown in Ref8,10, in the case of Eisenhart desiC plane spanned by the directiopsand u and is no
metric it simplifies to longer a constant, but a fluctuating function taking mostly

positive values (in some cases like the FPU modkl is
d2Ji EAVAN strictly positive whence the solutions of Eq11l) can be
az + WJ] =0, (7 subject toparametric instability Curvature fluctuations can
1

produce chaos even if no negative curvature is experienced

which is nothing but the usual tangent dynamics equation foPY the geodesics. As the sectional curvature is no longer
standard Hamiltonians. The Lyapunov exponents are usuall§PnstantKgr andR are, respectively, averagestofover the
computed evaluating the rate of exponential growth dfy direction ofJ and over both the direction dfand the direc-

means of a numerical integration of E@) [18]. tion of the reference geodgs!c in 'the latter. Equa(@)nnp
In the particular case afonstant curvaturenanifolds, Eq. Ion_ger holds,_ nevertheless it is a flrst—order_ approximation to
(5) becomes very simplEL9] which an estimate of the curvature fluctuations can be added
to obtain a stochastic model &f(s) independent of the dy-
D2~ namics of the systerfiL3]. This model leads to an analytical
o2 TKI*=0, (8)  estimate of the Lyapunov exponent which is correct(at

least for the FPU modgin the limit N— oo,

Up to this point the results are independent of the choice
of the metric. Specializing to the Eisenhart arc-length param-
etrization, Eq.(11) is rewritten in terms of the timé,

and has bounded oscillating solutials cos(/Ks) or expo-
nentially unstable solution¥~ exp(y—Ks) according to the
sign of the constant sectional curvatltewhich is given by

_Ke R b+ K(1) =0, (12)
" N—-1 N(N-1)’ ©)

K
where a dot stands for a time derivative amkdt)=

where K= RW(}IMQV is the Ricci curvature anR=R is K(s\/Zczl)/ZCf The stochastic model df(t) is given by
the scalar curvature},,,, is the Ricci tensor. Manifolds with
K<O0 are considered in abstract ergodic the(sge, e.g., K(t)=(kg)+(8%kp) (1), (13
Ref.[20]). Krylov [21] originally proposed that the presence
of some negative curvature could be the mechanism actuallwhere ky=Kg/N, ( ) stands for an average taken along a
at work to make chaos in physical systems, but in realistigeodesic, which, for systems in thermal equilibrium, can be
cases the curvatures are neither found constant nor evergubstituted with a statistical average taken with respect to a
where negative, and the straightforward approach based asuitable probability measure.g., the microcanonical or the
Eq. (8) does not apply. This is the main reason why Krylov's canonical measujg#(t) is a stationarys-correlated Gauss-
ideas remained confined to abstract ergodic theory with fevian stochastic process with zero mean and variance equal to
exceptions. 1. Using Eisenhart metric, and for standard Hamiltonians, the
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nonvanishing components of the Riemann tensor arenonic limit), and(kg)(e)=eY? ase—=. The crossover be-

Romjzaqi&qjv, hence the Ricci curvature has the remarkablytween the two asymptotic curves occurs at a valuesof
simple form €., which can be interpreted as a geometric estimate of the
SST. Such a geometric estimate is in very good agreement
5 with estimates based on other methods.
kR:NV vV, (14) Moreover, one can look at the random oscillator equation
(12) as an effective Jacobi equation for a geodesic flow on a
whereV? is the Euclidean Laplacian operator. Equati@g) ~ surfaceM whose Gaussian curvature is given by the random
becomes a stochastic differential equation, i.e., the evolutioprocessK(t). As long as nonlinear coupled oscillators are
equation of a random oscillatp22]. It is worth noticing that ~ considered, the average Ricci curvature is positive, hence
Eg. (12) is no longer dependent on the dynamics, since théM can be regarded as a sphere with a fluctuating radius. In
random process depends only on statistical averages. Tlike limit of vanishing fluctuations, one recovers the bounded
estimate of the Lyapunov exponeit is then obtained evolution of the Jacobi field associated with integrable dy-
through the evolution of the second moments of the solutiomamics. Chaos suddenly appears as curvature fluctuations are

of Eq. (12) as turned on, nevertheless it it will be “weak” as long as
o<k, i.e., as long asM can be considered as a weakly

] PR+ A1) perturbed sphere. On the contrary, as the size of curvature

A=lim §|09ﬁ- (19  fluctuations becomes of the same order of the average cur-

o ACREAC) vature, 5=k, M can no longer resemble a sphere, and the

dynamics will no longer “feel” the integrable limit. Hence

As shown in Ref[13], this yields the following expression we expect the dynamics to be strongly chaotic. This is by no

for . means a deep explanation of the existence of weakly and
1 4k strongly chaotic regimes in Hamiltonian dynamics. Never-

)\(k,ak,r):z(/\— ﬁ) (16)  theless it shows how the simple geometric concepts which

enter the Riemannian description of Hamiltonian chaos, be-

where sides providing effective computational tools, are also useful

in helping one’s physical intuition with images and analogies

23 13 which would be difficult to find elsewhere.
A= 5ET+ 7+5ﬁ72) , (173
Ill. THE MODEL AND THE GEOMETRIC OBSERVABLES
mJK The system studied in the present work is a crystah of
=3 KT o0+ mo : (17D atoms of massn moving in three dimensions and interacting
k k

through a pairwise central potenti@a(r). Its Hamiltonian is

in the above expressiors is the average Ricci curvature 1"
k=(kg) and & stands for the mean-square fluctuation of the H=5— >, p+V(X), (18)
Ricci curvature,s, = ( 5kg)*2. 2m =1

The advantages in using the geometric approach to

Hamiltonian chaos are thus evident. In fact, it is possible td/vhere
give reliable estimates of the Lyapunov exponent without 10
actually computing the time evolution of the system: the es- \/()():E iz v(|xi—xi). (19

timate (16) of A depends only on statistical averages which =1

can be either computed analytically in some cades in- , . - L
stance, in the case of the FPU modi&8]) or, in general, The geometric observables, which within the approximations

extracted from a Monte Carlo simulation, as is the case of thd€scribed in the preceding section are relevant to the dy-
model to be studied in the present work. namical instability of the system, are the average Ricci cur-

2 - .
The behavior of the average geometric observables as th&ture of MxR",gg) and its fluctuations. In the case of a
control parametefe.q., the energy density or the tempera-Pairwise interaction potential the Ricci curvature turns out to

ture) is varied conveys an information which goes beyondPe[see Eq(14)]

the possibility of computing the Lyapunov exponent. The 1 12

dependence of the average Ricci curvature on the energy _- Ml
density has already been used in R&f] to give an opera- KR=N izl 121 v (=2
tional definition of the SST, which allows its computation in

the thermodynamic limit, showing the stability of the thresh-where it should be noticed th&t=3n as it represents the
old in this limit for the FPU model. In fact, it is easy to find number of degrees of freedom. The quantities which have to
that for a harmonic chaigkg) is constant as the energy be determined are

density is varied, and this is a common feature of other in-

v’ (Ixi—=x;])

|Xi—in| 120

tegrable modelse.g., the Toda chaifil0]). A computation k=(kr), (219
of (kg)(e) at constant volumélength for the FPU chain 1

shows that the average Ricci curvature exhibits two well- U2 N T 2N )2

defined asymptotic behavior&g)(e) = const ase—0 (har- 5e=(5%e) N (Kr) — (KR))- (210
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FIG. 1. Average Ricci curvaturke vs the energy per degree of FIG. 2. Normalized mean-square fluctuation of the Ricci curva-

freedom at constgnt densityo(:l.q in natqral units Open circles, ture 6, /k vs the energy per degree of freedom at constant density.
data of computations where the interaction poter@8) has been gy his as in Fig. 1. The dotted line is the linear behavior.

expanded up to the fourth order in the Taylor series; solid circles,

data ob_talned with the “full _|nteract|on potent_le(I26). The two _wheree(R) is given again by Eq24b) andc, is the specific
dotted lines represent the estimated low- and high-energy behawohs t at tant vol Thus th v ical fluct
of k helping the identification o ; the line interpolating the high- eat at constant volume. us the microcanonical fluctua-

energy data has been obtained by fitting a lewa+ BeY2 with tions can be obtained from the canonical ones provided that
fitting parametersxr and B3, to the high-energy data. the values of the specific heat are known.

The probability measure which is usually employed for com- IV. RESULTS AND DISCUSSION
putational purposes is the canonical distribution so that the

statistical averages of Eq&1) can be written as The geometric observables described in the preceding
sections have been evaluated for a Lennard-Jones face-

_ _ V(0 centered-cubicfcc) crystal whose Hamiltonian is given by
(H(B)=2c" | dXf(X)e ' (22) Egs. (18) and (19) with a pair interaction potential, which

reads
whereZ is the configurational part of the canonical parti-
tion function, a\? [o\®
ARt

Through an appropriate choice of the free parameters
As a matter of fact in the canonical statistical ensemble théMas$, &, anda, this simple model is able to take account of
role of control parameter is played by the inverse temperaMost thermodynamical properties of rare gas solids.
ture B=1/kgT, wherekg is Boltzmann’s constant. However, The statistical averages of Eo[_§_1) have been caculatgd
in the thermodynamic limitll— ), the microcanonical av- by means of a_standard canonical _Monte C_arlo algorithm
erages can also be obtained from the canonical ones. As lo§€ré a simulation box afi=256 particles subjected to pe-

as the mean valuk=(kg) is concerned, the canonical and riodic boundary conditions has been used. In all simulations
microcanonical averages differ only byG{1/N) correction. only nearest-neighbor interactions have been dynamically

v(r)=4e (26)

Zc= f dX e AV, (23

Hence in the thermodynamic limit taken into account; the contributions of the interactions be-
yond the nearest-neighbor shell have been considered in a
(kr)(e)=(kgr)(B(€)), (249  “static approximation” in which the instantaneous relative
positions of the atoms are replaced by their equilibrium val-
19 ues. Apparently this procedure does not affect the evaluation
e(p)= 28 N ﬁ[logzc(ﬂ)]. (24D of the geometrical observables; its advantage resides in the

fact that it allows one to employ the all-neighbor parameters
As regardss?=( 5%kg), one must keep in mind that fluctua- &€ ando which give a reasonnable representation of the real
tions depend on the statistical ensemble. In fact, the differpair potential and the equation of state of rare gas sphidp
ence between canonical and microcanonical fluctuations All data reported here are given in dimensionless form by
does not vanish in the thermodynamic limit and the relationreducing them with respect to the “natural units” of the

between these two quantities is, according to R23], model; namely, the reduced energy is measured in units of
e and the Ricci curvature in units of/o? as well as its
(8%kr)(€)=(5%kr)(B(€))+F(B(e)), (258  mean-square fluctuation.
5 ) We performed two distinct series of simulations. In the
F(B)=— Ksf (‘9<kR>) (25b) first series the density of the crystal has been kept constant
c, B |’ in order to compare the qualitative behavior of the geometric
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_ ) FIG. 4. Average Ricci curvaturk vs the energy per degree of
FIG. 3. Theoretical estimate of the Lyapunov exponemic-  freedom. Here, in each simulation we have used values of the den-

cording to Eq.(16) versus the energy per degree of freedom atsjty according to the empirical equation of state of solid xenon.
constant density. Symbols as in Fig. 1. The dotted line is the power

law €2, in Figs. 3—6 refer to the values of the density given by the

. ) ) empirical equation of state of solid Xe{kg=228.6 K, =
observables with the known results for one-dimensional sys3 g5g A [24].

tems. In fact, computations of chains of anharmonic oscilla- The results reported in Figs. 3—6 show that the qualitative
tors have been performed at constant leri@10,18. The  pehavior of the curvature fluctuationig. 5 and of the
numerical outcomes of this series of simulations are reporteghagretical estimate of the Lyapunov expon&ntFig. 6) is

in Figs. 1-3, wherek, §/k, and the estimata of the  the same as in the constant density case, while the behaviour
Lyapunov exponent computed according to Bd) are plot-  f the average curvatur@ig. 4) is dramatically altered: in-

ted versus the energy per degree of freedom of the systemieaq of a crossover between two asymptotic regimes we
The additional data appearing in these figures refer to conmyave here a neat maximum kfat e=e,. It is remarkable
putations where the interaction potenti@b) has been ex- hat the value ob, — as estimated through the behavior of
panded up to the fourth order in the Taylor series. This Pros, or \ or by the position of the maximum &-—remains the
cedure allows us to perform simulations at higher energies idQgme as in the constant density case, and corresponds to a

order to provide a better representation of the crossover elemperatureT=0.15%/kg, i.e., occurs at a temperature of

ergy region. The results reported in Fig. 1 show that the SSTyysical relevance for the thermodynamics of this system.
or crossover energy, can be located aroege0.15. This

Moreover, the value oé; is in excellent agreement with the

estimate ofe. is confirmed by the results reported in Fig. 2, y41ye of the crossover energy estimated via the nonequilib-
for Fig. 2 shows that in correspondence of this threshold the;,,y, dynamicg11].

_ratio S /k deviates remarkably from the low-energy pehav- Let us now briefly comment about the problem of the
ior éi/k=e and tends to saturate towardg/k=1, which  rejevance of quantum effects for the results presented in this
implies that the manifold becomes highly anisotropic, andsection, As already stated in the Introduction, our analysis is
thus we expect the dynamics to enter the strongly chaotig completely classical one so that the significance of our
regime. As a consequence of the behaviok@nd &, the  resyits depends on the reliability of the classical approxima-
geometric estimate. of the Lyapunov exponent shows a tjon of the dynamics in the range of temperatures investi-
sharp crossover between two different power laws. It isyated. The strength of the quantum behavior of the interac-
worth recalling that the quantity her_e reporte_d is not thejon is ruled by a coupling parametgr=fiw /¢ that is the
“true” Lyapunov exponent but an estimate which has any-raiio petween the typical vibrational quantum enefgy,
how proven to be extremely accurate in other systf8%  caicylated in the harmonic approximation and the binding
The aim of the second series of simulations is mainly toenergys. Valuesg<1 denote that quantum effects may be
determine whether the averages of the geometric observablﬁ§g|ected in a wide range of temperatures. However, as ob-
are affected by a change in the density of the sample. IRepyed in Ref[25), the failure of the classical approximation
principle, one expects such a change because the curvatyigcomes quite evident for all rare gas solids at measurable
properties depend on space derivatives, and a change of theyneratures. The detailed evaluation of the influence of
density induces a change in the length scale. Moreover, it i§, antum effects for the determination of the threshold en-

interesting to test the expectation that the crossover in thgrgy e. is beyond the scope of this paper. We present here
relaxation behavior of a Xe crystal recently observed in NUyagits for solid xenon where, due to the small coupling pa-
merical simulationg11] is related with some major change ,meter §=0.106), the relevance of quantum effects in our
in the global properties of the dynamidse., the SST,  giscussion, if any, is certainly not decisive.

which in turn can be detected by the geometric observables
under investigation in this paper. Hence it is interesting to
compute the statistical averages of E(&l) using settings
which are close to those used in the molecular dynamics We have presented here a detailed description of how a
simulations reported ifil1]. In particular, the results shown differential geometric approach to Hamiltonian chaos can be

V. CONCLUSIONS
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FIG. 5. The same as Fig. 4 for the normalized mean-square FIG. 6. The same as Fig. 4 for the estimate of the Lyapunov
fluctuation of the Ricci curvaturé, /K. The dotted line is the linear exponentx. The dotted line is the law?.
behavior.
to be in excellent agreement with the numerical results pre-

. . . .__.sented in a recent papglrl]. The possibility of setting up an
used for determining the existence of the SST in a reaI'St'(éxperiment of this system for determining the physical con-

system. We have. discussed the connection between Fhe S%Equences of the transition from weak and strong chaos re-
and the geometrical observables which have been mvestg—#-me is under investigation.

gated in this paper. We have shown how standard methods
classical statistical mechanics can be used for our computa-
tional purposes. We have finally applied the framework here

developed to a Lennard-Jones crystal modeling solid xenon. It is a pleasure to thank Roberto Livi and Marco Pettini
The crossover energy region of this system has been clearfgr enlightening discussions and for their interest in our
detected and the value of the energy threshold has turned owbrk.
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